A) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR

MECÁNICA CUÁNTICA II (OPTATIVA)

B) DATOS BÁSICOS DEL CURSO

Semestre	Horas de teoría por semana	Horas de práctica por semana	Horas trabajo adicional estudiante	Créditos
7 u 8	5	0	5	10

C) OBJETIVOS DEL CURSO

Objetivos generales	Introducir al estudiante a la mecánica cuántica a través del formalismo de operadores. Ver que el estado cuántico de un sistema queda completamente especificado cuando se conoce el conjunto completo de operadores que conmutan entre ellos y conmutan con el Hamiltoniano. Mostrar que las propiedades del Hamiltoniano generan el conjunto completo de operadores.		
	Unidades	Objetivo específico	
Objetivos específicos	Estructura general de la mecánica ondulatoria	En esta unidad se presentan los conceptos básicos de la mecánica cuántica. Se pretende que el estudiante comprenda la ecuación de eigenvalores y se empiece a familiarizar con las reglas de conmutación entre operadores.	
	Método de operadores en mecánica cuántica	Se muestra al estudiante la solución del problema del oscilador armónico con el método de operadores. Se presentan los alcances de estos métodos y se discute el formalismo de la representación de Schroedinger y la de Heisenberg.	
	3. Sistema de N partículas	Describir la ecuación de Schroedinger para un sistema de N partículas. Encontrar su solución general. Mostrar que para Hamiltonianos invariantes ante traslaciones el impulso total se conserva, y si el Hamiltoniano es simétrico el operador de intercambio conmuta con el Hamiltoniano y esto da lugar a que las funciones de onda deben de tener paridad definida.	
	Ecuación de Schrödinger en tres dimensiones	Generalizar los conceptos y resultados que se obtienen en una dimensión, al caso de tres dimensiones. Mostrar que la invarianza ante rotaciones del Hamiltoniano permite obtener al momento angular como una constante de movimiento.	
	5. Momento angular	Determinar la forma explícita del operador momento angular. Con ayuda de los operadores de subida y de bajada encontrar las eigenfunciones así como los eigenvalores para los operadores L2 y Lz.	
	6. La ecuación Radial	Encontrar las formas asintótica de la ecuación de radial (r = 0 y r = inf.). Se muestra la solución radial para los problemas; Partícula libre, partícula en un pozo cuadrado y potencial coulombiano. Se presenta el primer modelo cuántico para el átomo de hidrógeno.	

7. Operadores, matrices y spin	Se presenta la representación matricial de la mecánica cuántica aplicando la teoría al problema del oscilador armónico. Se ve la representación del operador momento angular y se verifican sus reglas de conmutación. Se introduce las funciones que describen el estado de spin de un sistema (spinores).
8.Suma de momento angular	Se muestra la manera de cómo se suman los momentos angulares así como la suma spin órbita. Se ve la conveniencia de agregar el efecto angular en los estados cuánticos.
9. Teoría de perturbaciones independientes del tiempo	Se hace un desarrollo en serie de potencias del Hamiltoniano con el potencial perturbativo y se determinan los diferentes órdenes de corrección. Como una aplicación del método se discute el efecto Stark.
10.Átomo de hidrógeno	Se presenta la ecuación de Schrodinger para el átomo de hidrógeno con la corrección relativista, se incorpora la interacción spin órbita y se muestra el desdoblamiento de estados que dan lugar a la estructura hiperfina
11. El átomo de Helio	Se incorpora el Hamiltoniano la interacción entre dos electrones y se resuelve el sistema a primera aproximación. Se obtiene el primer estado excitado y se obtiene la energía de intercambio. Se analiza e principio variacional de Rita y se da una aplicación al problema de autorización.
12. Estructura electrónica de los átomos	Se estructura la ecuación de Hartree para un sistema de N electrones. Se discute cualitativamente la estructura electrónica de los átomos y con esto se clasifica la tabla periódica de los elementos.

D) CONTENIDOS Y MÉTODOS POR UNIDADES Y TEMAS 5h/semana, 16 semanas: 80 h/semestre

Jil/Semana, 10	Semanas. ou n/semestre		
Unidad 1 Estru	ctura general de la mecánica ondulatoria	7 h	
Tema 1.1 Eigenv	valores y eigenfunciones.	1 h	
Tema 1.2 Teorer	na de expansión.	1 h	
Tema 1.3 Analog	gía con el espacio vectorial.	0.5 h	
Tema 1.4 Opera	dores lineales.	0.5 h	
Tema 1.5 Opera	dores hermíticos.	0.5 h	
Tema 1.6 Adjunt	o de un operador.	0.5 h	
Tema 1.7 Reglas	de conmutación.	0.5 h	
Tema 1.8 Compl	ma 1.8 Completez. 0.5 h		
Tema 1.9 Degen	ema 1.9 Degeneración 0.5 h		
Tema 1.10 Conju	unto completo de observables que conmutan.	0.5 h	
Tema 1.11 Relac	ión de incertidumbre.	0.5 h	
Tema 1.12 Límit	e clásico de la teoría cuántica.	0.5 h	
Lecturas y	Libros de texto y Artículos de divulgación		
otros recursos			
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado físico		
enseñanza	de cada uno de los conceptos nuevos		
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro		
aprendizaje			

Unidad 2. Méto	odo de operadores en mecánica cuántica	7 h	
Tema 2.1 Proble	mas del oscilador armónico.	2 h	
Tema 2.2 Opera	dores de subida y bajada.	1 h	
Tema 2.3 Eigenv	valores y eigenfunciones.	1 h	
Tema 2.4 La inte	rpretación de la función de onda.	1 h	
Tema 2.5 Desari	Tema 2.5 Desarrollo temporal de un sistema en término de operadores.		
Tema 2.6 Repres	Tema 2.6 Representación de Schrödinger y la de Heisenberg. 1 h		
Lecturas y	Libros de texto y Artículos de divulgación		
otros recursos			
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado físico		
enseñanza	de cada uno de los conceptos nuevos		
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro		
aprendizaje			

Unidad 3. Sist	ema de N partículas	7 h
Tema 3.1 La ecu	ación de Schroedinger para un sistema de N partículas.	1 h
Tema 3.2 Conse	rvación del momentum.	1 h
Tema 3.3 Separa	ación en coordenadas del centro de masa.	1 h
Tema 3.4 Masa ı	reducida.	1 h
Tema 3.5 Partícu	ulas idénticas.	1h
Tema 3.6 Opera	dor de intercambio.	0.5 h
Tema 3.7 Princip	pio de exclusión de Pauli.	0.5 h
Tema 3.8 Fermio	ones y Bosones.	0.5 h
Tema 3.9 Energi	ía de Fermi.	0.5 h
Lecturas y	Libros de texto y Artículos de divulgación	
otros recursos		
Métodos de enseñanza	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado físico de cada uno de los conceptos nuevos. Experimentos demostrativos de los principios físicos relacionados con esta unidad	
Actividades de aprendizaje	s de Resolución de problemas tanto por parte del alumno como del maestro	

Unidad 4. Ecu	ación de Schroedinger en tres dimensiones	7 h
Tema 4.1 Soluci	ón de la Ec. de Schroedinger para una caja tridimensional (método clásico).	2 h
	ación del centro de masas.	1 h
Tema 4.3 Invaria	anza ante rotaciones.	1 h
Tema 4.4 La ser	paración del momento angular.	1 h
Tema 4.5 La ecu	ación radial.	1 h
Tema 4.6 Reglas	s de Hund para los estados base de átomos de muchos electrones.	1 h
Lecturas y	Libros de texto y Artículos de divulgación	
otros recursos		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	ado físico
enseñanza	de cada uno de los conceptos nuevos.	
	Experimentos demostrativos de los principios físicos relacionados con esta unidad	
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro	
aprendizaje		

Unidad 5. Mon	nento angular	7 h
Tema 5.1 Expres	sión para L2.	2 h
	mas para eigenvalores para L2 y Lz.	2 h
Tema 5.3 Opera	dores de subida y bajada L.	1 h
	ones de Legendre.	1 h
Tema 5.5 Armón	Tema 5.5 Armónicos esféricos	
Lecturas y	Libros de texto y Artículos de divulgación	
otros recursos		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	cado físico
enseñanza	de cada uno de los conceptos nuevos	
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro	

Unidad 6. La e	ecuación Radial	7 h	
Tema 6.1 Soluci	ón de la ecuación radial para puntos cercanos al origen.	1 h	
Tema 6.2 Soluci	ón de la ecuación radial para r = inf.	1 h	
Tema 6.3 Partícu	ula libre.	0.5 h	
Tema 6.4 Funcio	ones esféricas de Bessel.	0.5 h	
Tema 6.5 Pozo o	cuadrado solución discreta.	0.5 h	
Tema 6.6 Pozo o	cuadrado solución continua.	0.5 h	
Tema 6.7 Poteno	cial coulombiano.	0.5 h	
Tema 6.8 Simpli	Tema 6.8 Simplificación de la función radial. 0.5 h		
Tema 6.9 Simpli	Tema 6.9 Simplificación de la ecuación radial. 0.5 h		
Tema 6.10 Núme	eros cuánticos.	0.5 h	
Tema 6.11 Dege	neración.	0.5 h	
Tema 6.12 Func	iones de onda y órbitas.	0.5 h	
Lecturas y	Libros de texto y Artículos de divulgación		
otros recursos			
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado físico		
enseñanza	de cada uno de los conceptos nuevos		
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro		
aprendizaje			

Unidad 7. Ope	eradores, matrices y spin	7 h
	sentación matricial para el oscilador armónico.	2 h
Tema 7.2 Repre	sentación matricial del momento angular.	1 h
Tema 7.3 Matric	es para spin 1/2.	1 h
Tema 7.4 Espino	ores.	1 h
Tema 7.5 Precesión del spin en un campo magnético.		
Tema 7.6 Reson	Tema 7.6 Resonancia paramagnética.	
Lecturas y	Libros de texto y Artículos de divulgación	
otros recursos		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	cado físico
enseñanza	anza de cada uno de los conceptos nuevos	
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro	

Unidad 8. Sun	na de momento angular	7 h
Tema 8.1 Adició	n de los dos spines 1/2.	2 h
Tema 8.2 Eigenf	unciones del singlete y del triplete.	2 h
Tema 8.3 Adició	n spin órbita.	2 h
Tema 8.4 Princip	pio de exclusión y estados de momento angular.	1 h
Lecturas y	Libros de texto y Artículos de divulgación	
otros recursos		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	ado físico
enseñanza	de cada uno de los conceptos nuevos	
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro	
aprendizaje		

Unidad 9. Teo	ría de perturbaciones independientes del tiempo	7 h
	niento a primer orden en la energía.	1 h
Tema 9.2 Teoría	de perturbaciones a segundo orden.	1 h
Tema 9.3 Efecto	Stark.	1 h
Tema 9.4 Ausen	cia de corrimientos para el estado base.	1 h
Tema 9.5 Mome	nto dipolar eléctrico.	1 h
Tema 9.6 Corrin	Tema 9.6 Corrimiento a segundo orden.	
Tema 9.7 Efecto	lineal de Stark para n=2.	1 h
Lecturas y	Libros de texto y Artículos de divulgación	
otros recursos		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado físico	
enseñanza	de cada uno de los conceptos nuevos	
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro	

Unidad 10. Átomo de Hidrógeno			
Tema 10.1 Corrección relativista a la masa.			
Tema 10.2 Acoplamiento spin-órbita.			
Tema 10.3 Efecto Zeeman anómalo.		1 h	
Tema 10.4 Interacción hiperfina.		2 h	
Lecturas y	Libros de texto y Artículos de divulgación		
otros recursos			
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado físico		
enseñanza	de cada uno de los conceptos nuevos		
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro		
aprendizaje			

Unidad 11. El átomo de Helio		
Tema 11.1 Primera aproximación.		
Tema 11.2 Corrimiento a primer orden debido a la repulsión e - e.		
Tema 11.3 El primer estado excitado.		
Tema 11.4 Energía de intercambio.		1 h
Tema 11.5 Principio variacional de Ritz.		1 h
Lecturas y	Libros de texto y Artículos de divulgación	
otros recursos		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	ado físico
enseñanza	de cada uno de los conceptos nuevos	
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro	
aprendizaje		

Unidad 12. Estructura electrónica de los átomos			
Tema 12.1 El principio variacional y la ecuación de Hartree.			
Tema 12.2 Tabla periódica.			
Tema 12.3 Discusión cualitativa de la estructura de capas.		2 h	
Lecturas y	Libros de texto y Artículos de divulgación		
otros recursos			
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado físico		
enseñanza	de cada uno de los conceptos nuevos		
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro		
aprendizaje			

E) ESTRATEGIAS DE ENSEÑANZA Y APRENDIZAJE

- Exposición del maestro con apoyo de recursos visuales y audiovisuales
- Tareas previas y posteriores a cada tema
- Análisis de textos científicos y tecnológicos
- Evaluación de conceptos formales en exámenes parciales
- Evaluación de la capacidad de síntesis e integración del conocimiento mediante exámenes parciales

F) Evaluación y acreditación

Elaboración y/o presentación	Periodicidad	Abarca	Ponderación
Primer examen parcial	1	Unidades 1, 2 y 3	20%
Segundo examen parcial	1	Unidades 4, 5 y 6	20%
Tercer examen parcial	1	Unidades 7 y 8	20%
Cuarto examen parcial	1	Unidades 9 a 12	20%
Examen ordinario	1	Unidades 1 a 12	20%
		TOTAL	100%

G) BIBLIOGRAFÍA Y RECURSOS INFORMÁTICOS

Textos básicos

1. Quantum Physics, Stephen Gasiorowicz. Editorial John Wiley and Sons.

Textos complementarios

- 1. Fundamentos de la mecánica cuántica, Sidney Borowitz. Editorial Reverté, S. A.
- 2. Física Cuántica, Robert Eisberg Robert Resnick. Editorial Limusa