Universidad Autónoma de San Luis Potosí Facultad de Ciencias Programas Analíticos de la Licenciatura de Biofísica.

1) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR

A) TERMODINÁMICA MOLECULAR

B) Datos básicos del curso

Semestre	Horas de teoría por semana	Horas de práctica por semana	Horas trabajo adicional estudiante	Créditos
7 u 8	5	0	5	10

C) OBJETIVOS DEL CURSO

Objetivos generales	Al finalizar el curso el estudiante deberá tener una visión moderna e integrada de los conceptos y leyes fundamentales de la termodinámica clásica, la física estadística, y la termodinámica irreversible, así como de su uso en el estudio de las propiedades macroscópicas de los materiales desde una perspectiva molecular, con especial énfasis en su aplicación a materiales y sistemas biomoleculares. su aplicación a la descripción de los efectos de campos externos (eléctricos, gravitacionales, de confinamiento, etc.) sobre la estructura de un fluido y los solutos (moleculares, macromoleculares o coloidales) que contenga, y a la descripción de los procesos de difusión que ocurren en tales sistemas.			
	Unidades	Objetivo específico		
	Propiedades y estados macroscópicos de los materiales.	Discutir las propiedades elementales (termodinámicas, estructurales, mecánicas, dinámicas y de transporte) de los materiales. Definir el equilibrio termodinámico y otros estados macroscópicos de los materiales. Ilustrar el concepto de modelos moleculares de las propiedades macroscópicas de los materiales.		
	2. Termodinámica clásica.	Revisar los enunciados tradicionales de las leyes fundamentales de la termodinámica clásica e introducir el enfoque postulatorio. Discutir la naturaleza intrínsecamente probabilística e informática de la segunda ley de la termodinámica.		
Objetivos específicos	Descripción termodinámica de un fluido inhomogéneo.	Introducir el concepto de perfil de densidad de masa y de energía de un fluido en presencia de campos externos. Relación fundamental y ecuaciones de estado de un fluido inhomogéneo.		
	Descripción probabilística de los estados macroscópicos. Fluctuaciones térmicas.	Estados posibles, estados accesibles, distribución de probabilidad de los estados macroscópicos, valor medio y correlación de las fluctuaciones. Postulado de Boltzmann-Planck-Einstein. Aproximación gaussiana.		
	Estructura de equilibrio de los líquidos.	Interacciones moleculares. Fluido de esferas duras. Aproximación de Percus-Yevick. Modelo primitivo y aproximación de Debye-Hückel. Doble capa eléctrica. Interacciones efectivas entre partículas en solución. Fuerzas de depleción.		
	6. Fluctuaciones dependientes del tiempo y relajación al equilibrio.	Relajación macroscópica y fluctuaciones espontáneas. Ecuación de Langevin. Ecuación de difusión. Modelos estocásticos de las fluctuaciones dependientes del tiempo. Teoría de Onsager de la termodinámica irreversible.		

Universidad Autónoma de San Luis Potosí Facultad de Ciencias Programas Analíticos de la Licenciatura de Biofísica.

7. Hidrodinámica molecular.	Difusión y movimiento browniano de partículas interactuantes, Funciones de correlación dependientes del tiempo, Efectos de memoria, niveles de descripción y descripciones contraídas, Procesos estocásticos con memoria, Extensión de la teoría de Onsager de las fluctuaciones. Modelos moleculares de los procesos de relajación, Hidrodinámica molecular.
8. Estados metaestables y dinámicamente arrestados.	Relajación irreversible hacia el estado de equilibrio, Estados de equilibrio estable, metaestable e inestable. Estados arrestados, Fenomenología de los vidrios y los geles.

D) CONTENIDOS Y MÉTODOS POR UNIDADES Y TEMAS 5h/semana, 16 semanas: 80 h/semestre

	Comanac. Componicate	
Unidad 1 Propiedades y estados macroscópicos de los materiales.		
Tema 1.1 Energi	a interna, calor específico, módulos elásticos.	2 h
Tema 1.2 Propie	dades dinámicas: coeficientes de fricción, de difusión, viscosidad, conductividad, etc.	2 h
Tema 1.3 Equilib	prio termodinámico y sus condiciones. Ecuaciones térmica y mecánica de estado.	2 h
Tema 1.4 Gas id	eal, sólido de Einstein y líquido de van der Waals.	1 h
Tema 1.5		2 h
Tema 1.6		1 h
Lecturas y	Introducción a la termodinámica clásica. Leopoldo García-Colín Scherer. Trillas, 4ª edición.	
otros recursos	Thermodynamics and an introduction to thermostatics. Herbert B. Callen. John Wiley, New Yo	ork.
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	cado
enseñanza	físico de cada uno de los conceptos nuevos	
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro	
aprendizaje		

Unidad 2. Termodinámica clásica		
Tema 2.1 Primer	a ley de la termodinámica: conservación de la energía.	2 h
Tema 2.2 Segun	da ley de la termodinámica de acuerdo con Kelvin y de Clausius.	2 h
Tema 2.3 Postu	lados de Callen, relación termodinámica fundamental (RTF), ecuaciones de estado.	4 h
Tema 2.4 Interpi	etación probabilística de la segunda ley. Naturaleza informática de la segunda ley.	2 h
Lecturas y	Introducción a la termodinámica clásica. Leopoldo García-Colín Scherer. Trillas, 4ª edición.	
otros recursos	Thermodynamics and an introduction to thermostatics. Herbert B. Callen. John Wiley, New Y	ork.
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signifi	cado
enseñanza	físico de cada uno de los conceptos nuevos	
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro	

Unidad 3. Desc	cripción termodinámica de un fluido inhomogéneo.	10 h	
Tema 3.1 Relaci	ón termodinámica fundamental y ecuaciones de estado de un fluido inhomogéneo.	3 h	
Tema 3.2 Termo	dinámica no local. Condiciones de equilibrio.	2 h	
Tema 3.3 Gas id	eal inhomogéneo y fórmula barométrica.	1 h	
Tema 3.4 Energ	ía libre de un fluido inhomogéneo.	2 h	
Tema 3.5 Aprox	imación de Debye-Hückel.	2 h	
Lecturas y	Thermodynamics and an introduction to thermostatics. Herbert B. Callen. John Wiley, New Y	ork y	
otros recursos	notas del curso.		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significa	cado	
enseñanza	nseñanza físico de cada uno de los conceptos nuevos.		
	Experimentos demostrativos de los principios físicos relacionados con esta unidad		
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro		
aprendizaje			

Universidad Autónoma de San Luis Potosí Facultad de Ciencias Programas Analíticos de la Licenciatura de Biofísica.

Unidad 4. Desc	cripción probabilística de los estados macroscópicos. Fluctuaciones térmicas.	10 h
	os posibles, estados accesibles, y su descripción probabilística.	2 h
Tema 4.2 Equilib	prio termodinámico: condiciones de equilibrio y valores medios de las variables.	2 h
Tema 4.3 Fluctu	aciones: covariancia y estabilidad del equilibrio. Funciones de correlación.	3 h
Tema 4.4 Postul	ado de Boltzmann-Planck-Einstein. Aproximación gaussiana.	3 h
Lecturas y	Thermodynamics and an introduction to thermostatics. Herbert B. Callen. John Wiley, New Yo	ork y
otros recursos	notas del curso.	
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	ado
enseñanza	físico de cada uno de los conceptos nuevos.	
	Experimentos demostrativos de los principios físicos relacionados con esta unidad	
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro	

Unidad 5. Estr	uctura de equilibrio de los líquidos.	10 h	
Tema 5.1 Interac	Tema 5.1 Interacciones moleculares. Fuerzas de van der Waals, electrostaticas, de esfera dura.		
Tema 5.2 Estru	ctura del fluido de esferas duras y su aproximación de Percus-Yevick.	3 h	
	imación de Debye-Hückel y teoría de la doble capa eléctrica.	3 h	
Tema 5.4 Intera	Tema 5.4 Interacciones efectivas entre partículas en solución. Fuerzas de depleción. 2 h		
Lecturas y	Theory of Simple Liquids, J. P. Hansen and I. R. McDonald, (Academic Press Inc., 1976) y n	otas del	
otros recursos	curso.		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significa	cado	
enseñanza	físico de cada uno de los conceptos nuevos		
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro		

Unidad 6. Fluctuaciones dependientes del tiempo y relajación al equilibrio.			
Tema 6.1 Fenon	nenología de los procesos de relajación. Ecuaciones de transporte.	2 h	
Tema 6.2 Leyes	lineales de la termodinámica irreversible.	3 h	
Tema 6.3 Movim	iento browniano. Fluctuaciones dependientes del tiempo.	2 h	
Tema 6.4 Model	Tema 6.4 Modelos estocásticos y teoría de Onsager de las fluctuaciones. 3 h		
Lecturas y	Statistical thermodynamics of nonequilibrium processes. Joel Keizer. Springer, New York (19	87) y	
otros recursos	notas del curso.		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	cado	
enseñanza	físico de cada uno de los conceptos nuevos		
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro		
aprendizaje			

Unidad 7. Hidr	odinámica molecular	12 h	
Tema 7.1 Difusio	ón y movimiento browniano de partículas interactuantes.	2 h	
Tema 7.2 Funcio	ones de correlación dependientes del tiempo.	2 h	
Tema 7.3 Efecto	s de memoria, niveles de descripción y descripciones contraídas.	2 h	
Tema 7.4 Proces	sos estocásticos con memoria. Extensión de la teoría de Onsager de las fluctuaciones.	2 h	
Tema 7.5 Mode	los moleculares de los procesos de relajación.	2 h	
Tema 7.6 Hidro	Tema 7.6 Hidrodinámica molecular. 2 h		
Lecturas y	Statistical thermodynamics of nonequilibrium processes. Joel Keizer. Springer, New York (19	87);	
otros recursos	Molecular Hydrodynamics, J. P. Boon and S. Yip, Dover, (1991); notas del curso.		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del significado		
enseñanza	tisico de cada uno de los concentos nuevos		
Experimentos demostrativos de los principios físicos relacionados con esta unidad			
Actividades de aprendizaje	Resolución de problemas tanto por parte del alumno como del maestro		

Universidad Autónoma de San Luis Potosí Facultad de Ciencias

Programas Analíticos de la Licenciatura de Biofísica.

Unidad 8. Esta	dos metaestables y dinámicamente arrestados.	8 h
Tema 8.1 Relaja	ción irreversible hacia el estado de equilibrio.	2 h
Tema 8.2 Estado	os de equilibrio estable, metaestable e inestable. Estados arrestados.	3 h
Tema 8.3 Fenon	nenología de los vidrios y los geles.	3 h
Lecturas y	Artículos de revisión y notas del curso.	
otros recursos		
Métodos de	Exposición detallada frente al pizarrón de cada uno de los temas haciendo énfasis del signific	ado
	físico de cada uno de los conceptos nuevos.	
enseñanza	Experimentos demostrativos de los principios físicos relacionados con esta unidad	
Actividades de	Resolución de problemas tanto por parte del alumno como del maestro	
aprendizaje		

E) ESTRATEGIAS DE ENSEÑANZA Y APRENDIZAJE

- Exposición del maestro con apoyo de recursos visuales y audiovisuales
- Tareas previas y posteriores a cada tema
- Análisis de textos científicos y tecnológicos
- Evaluación de conceptos formales en exámenes parciales
- Evaluación de la capacidad de síntesis e integración del conocimiento mediante exámenes parciales

F) EVALUACIÓN Y ACREDITACIÓN

Elaboración y/o presentación	Periodicidad	Abarca	Ponderación
Primer examen parcial	1	Unidades 1 y 2	20%
Segundo examen parcial	1	Unidad 3 y 4	20%
Tercer examen parcial	1	Unidades 5 y 6	20%
Cuarto examen parcial	1	Unidad 7 y 8	20%
Examen ordinario	1	Unidades 1 a 8	20%
		TOTAL	100%

G) BIBLIOGRAFÍA Y RECURSOS INFORMÁTICOS

Textos básicos

- Introducción a la termodinámica clásica. Leopoldo García-Colín Scherer. Trillas, 4ª edición (1990).
- Thermodynamics and an introduction to thermostatics, second edition. Herbert B. Callen. John Wiley and sons, New York.
- Theory of Simple Liquids, J. P. Hansen and I. R. McDonald, (Academic Press Inc., 1976).
- Statistical thermodynamics of nonequilibrium processes. Joel Keizer. Springer-Verlag, New York (1987).
- Molecular Hydrodynamics, J. P. Boon and S. Yip, Dover, (1991).

Textos complementarios

- -Termodinámica molecular. Notas del curso. M. Medina Noyola.
- Diversos artículos de revisión, de investigación y de divulgación.